Publications by authors named "A Bounacer"

MicroRNAs (miRNAs) are short non-coding RNAs that have been implicated in fine-tuning gene regulation, although the precise roles of many are still unknown. Pancreatic development is characterized by the complex sequential expression of a gamut of transcription factors. We have performed miRNA expression profiling at two key stages of mouse embryonic pancreas development, e14.

View Article and Find Full Text PDF

Aims/hypothesis: Epithelium-mesenchyme interactions play a major role in pancreas development. Recently, we demonstrated that embryonic pancreatic mesenchyme enhanced progenitor cell proliferation but inhibited endocrine cell differentiation. Here, we investigated the role played by sulphated proteoglycans, which are known to be essential to embryonic development, in this inhibitory effect.

View Article and Find Full Text PDF

The importance of mesenchymal-epithelial interactions in the proliferation of pancreatic progenitor cells is well established. Here, we provide evidence that the mesenchyme also controls the timing of beta-cell differentiation. When rat embryonic pancreatic epithelium was cultured without mesenchyme, we found first rapid induction in epithelial progenitor cells of the transcription factor neurogenin3 (Ngn3), a master gene controlling endocrine cell-fate decisions in progenitor cells; then beta-cell differentiation occurred.

View Article and Find Full Text PDF

Ras mutations occur as an early event in many human tumours of epithelial origin, including thyroid. Using primary human thyroid epithelial cells to model tumour initiation by Ras, we have shown previously that activation of both the MAP kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) effector pathways are necessary, but even when activated together are not sufficient, for Ras-induced proliferation. Here, we show that a third effector, RalGEF, is also activated by Ras in these cells, that this activation is necessary for Ras-induced proliferation, and furthermore that in combination with the MAPK and PI3K effectors, it is able to reproduce the proliferative effect of activated Ras.

View Article and Find Full Text PDF

Using microinjection of recombinant protein to directly control 'expression' levels, we have compared the proliferative response to ras oncogene activation in two normal cell types--fibroblast and thyroid epithelial cell--which give rise to human tumours with very low and high frequencies of ras mutation respectively. A concentration-dependent stimulation of DNA synthesis was observed in thyrocytes, matched by an almost perfectly reciprocal inhibition in fibroblasts. A concentration-dependent induction of the cyclin-dependent kinase (CDK) inhibitor p21WAF1 was observed in both cell types, but p16Ink4a was induced by ras only in fibroblasts.

View Article and Find Full Text PDF