Background: Titanium dioxide (TiO) is banned in some countries but its use is still permitted in others. The global food supply chain is therefore challenged with the need to use rapid and reliable testing methods to either detect the presence of TiO or to quantify its concentration. The goal of this study was to determine the feasibility of using color, texture profile analysis, Raman microscopy, and X-ray fluorescence (XRF) spectroscopy to detect and quantify TiO in fillings used in the pastry and confectionery industry.
View Article and Find Full Text PDFMolecular imaging with PET offers an alternative method to quantify programmed-death-ligand 1 (PD-L1) to accurately select patients for immunotherapies. More and more clinical and preclinical trials involve radiolabeling of antibody fragments for their desirably fast clearance and high tumor penetration. As the radiolabeling strategy can significantly impact pharmacokinetics and biodistribution, we explored in this work a site-specific radiofluorination strategy on an anti-PD-L1 fragment antigen-binding (Fab) and compared the pharmacokinetic and biodistribution properties with the same Fab labeled using stochastic radiolabeling chemistry.
View Article and Find Full Text PDFMult Scler J Exp Transl Clin
April 2022
Background: Multiple sclerosis (MS) places a considerable financial burden on the society. However, data quantifying the contemporary cost burden in France are lacking.
Objective: This cost-of-illness study aimed to estimate the direct and indirect costs associated with MS in France.
PET imaging of programmed cell death ligand 1 (PD-L1) may help to noninvasively predict and monitor responses to anti-programmed cell death 1/anti-PD-L1 immunotherapies. In this study, we compared the imaging characteristics of 3 radioligands derived from the anti-PD-L1 IgG1 complement 4 (C4). In addition to the IgG C4, we produced a fragment antigen-binding (Fab) C4, as well as a double-mutant IgG C4 (H310A/H435Q) with minimal affinity for the murine neonatal Fc receptor.
View Article and Find Full Text PDFAccumulating evidence majorly implicates immune dysfunction in the etiology of psychotic disorders. In particular, altered numbers and functions of natural killer (NK) cells have been described in psychosis, but interpretation has often been confounded by a number of biases, including treatment. Eighty-one first-episode psychosis (FEP) patients who subsequently received a diagnosis of either schizophrenia (SZ; n = 30) or bipolar disorder (BP; n = 31) over a five-year follow-up period were investigated for their NK cell phenotype and compared to 61 healthy controls (HCs).
View Article and Find Full Text PDF