This study looks into how to make proton exchange membrane (PEM) fuel cells work more efficiently in environments that change over time using new Maximum Power Point Tracking (MPPT) methods. We evaluate the efficacy of Flying Squirrel Search Optimization (FSSO) and Cuckoo Search (CS) algorithms in adapting to varying conditions, including fluctuations in pressure and temperature. Through meticulous simulations and analyses, the study explores the collaborative integration of these techniques with boost converters to enhance reliability and productivity.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2022
This study aimed to investigate new double perovskite oxides in search of new promising functional material with properties of interest for high density storage applications. The crystal structure, magnetic, electronic and magneto-optical properties of the rare-earth-based double perovskites BaB'RuO(B' = Er, Tm) were investigated through full-potential linearized augmented plane wave method within the context of density functional theory (DFT) in Wien2k code. We used generalized gradient approximation (GGA) and GGA + U approaches to calculate magneto-optical properties, including spin-orbit coupling due to 4f and 4d-electrons.
View Article and Find Full Text PDFIn this paper, a robust attitude and position control of a novel modified quadrotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against actuator faults than conventional quad-rotor UAV has been developed. A robust backstepping controller with adaptive interval type-2 fuzzy logic is proposed to control the attitude and position of the modified quadrotor under actuator faults. Besides globally stabilizing the system amid other disturbances, the insensitivity to the model errors and parametric uncertainties are the asset of the backstepping approach.
View Article and Find Full Text PDFIn this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial octorotor helicopter control is proposed in presence of actuator faults. Radial Base Function Neural Network (RBFNN), Fuzzy Logic Control approach (FLC) and Sliding Mode Control (SMC) technique are used to design a controller, named Fault Tolerant Control (FTC), for each subsystem of the octorotor helicopter. The proposed FTC scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy controller, and guaranteeing the stability and the robustness of the system.
View Article and Find Full Text PDFIn this paper, a robust controller for a three degree of freedom (3 DOF) helicopter control is proposed in presence of actuator and sensor faults. For this purpose, Interval type-2 fuzzy logic control approach (IT2FLC) and sliding mode control (SMC) technique are used to design a controller, named active fault tolerant interval type-2 Fuzzy Sliding mode controller (AFTIT2FSMC) based on non-linear adaptive observer to estimate and detect the system faults for each subsystem of the 3-DOF helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the rules number of the fuzzy controller.
View Article and Find Full Text PDF