Publications by authors named "A Bottger"

head regeneration consists of hypostome/organizer and tentacle development, and involves Notch and Wnt/β-catenin signaling. Notch inhibition blocks hypostome/organizer regeneration, but not the appearance of the tentacle tissue. β-Catenin inhibition blocks tentacle, but not hypostome/organizer regeneration.

View Article and Find Full Text PDF

The Notch-signalling pathway plays an important role in pattern formation in Hydra. Using pharmacological Notch inhibitors (DAPT and SAHM1), it has been demonstrated that HvNotch is required for head regeneration and tentacle patterning in Hydra. HvNotch is also involved in establishing the parent-bud boundary and instructing buds to develop feet and detach from the parent.

View Article and Find Full Text PDF

The electrochemical dinitrogen reduction reaction (NRR) has recently gained much interest as it can potentially produce ammonia from renewable intermittent electricity and replace the Haber-Bosch process. Previous literature studies report Fe- and Mo-carbides as promising electrocatalysts for the NRR with activities higher than other metals. However, recent understanding of extraneous ammonia and nitrogen oxide contaminations have challenged previously published results.

View Article and Find Full Text PDF

An attachment has been developed for x-ray diffractometer systems equipped with a domed stage when using a 2D or 1D detector. It consists of a single screen in front of the detector positioned such that it blocks diffraction from the dome. This results in measured data free of disturbing spurious peaks and background, thereby greatly facilitating further data analysis.

View Article and Find Full Text PDF

In Hydra, Notch inhibition causes defects in head patterning and prevents differentiation of proliferating nematocyte progenitor cells into mature nematocytes. To understand the molecular mechanisms by which the Notch pathway regulates these processes, we performed RNA-seq and identified genes that are differentially regulated in response to 48 h of treating the animals with the Notch inhibitor DAPT. To identify candidate direct regulators of Notch signalling, we profiled gene expression changes that occur during subsequent restoration of Notch activity and performed promoter analyses to identify RBPJ transcription factor-binding sites in the regulatory regions of Notch-responsive genes.

View Article and Find Full Text PDF