Publications by authors named "A Botello-Mendez"

Article Synopsis
  • Colloidal nanocrystals have advanced in size and surface properties, leading to potential applications in optoelectronics and quantum materials.
  • The study focuses on two-dimensional BiSe crystals with controlled thickness, exploring the transition of a topological insulator as it shifts from three to two dimensions.
  • Results reveal an 8 nm wide edge state around specific BiSe structures and discuss its characteristics using advanced theoretical models, also suggesting the possible state density for future devices.
View Article and Find Full Text PDF

Resonant Raman spectroscopy is a powerful tool for providing information about excitons and exciton-phonon coupling in two-dimensional materials. We present here resonant Raman experiments of single-layered WS2 and WSe2 using more than 25 laser lines. The Raman excitation profiles of both materials show unexpected differences.

View Article and Find Full Text PDF

Two-dimensional (2D) conjugated polymers exhibit electronic structures analogous to that of graphene with the peculiarity of π-π* bands which are fully symmetric and isolated. In the present letter, the suitability of these materials for electronic applications is analyzed and discussed. In particular, realistic 2D conjugated polymer networks with a structural disorder such as monomer vacancies are investigated.

View Article and Find Full Text PDF

Heteroatom doping is an efficient way to modify the chemical and electronic properties of graphene. In particular, boron doping is expected to induce a p-type (boron)-conducting behavior to pristine (nondoped) graphene, which could lead to diverse applications. However, the experimental progress on atomic scale visualization and sensing properties of large-area boron-doped graphene (BG) sheets is still very scarce.

View Article and Find Full Text PDF

Here we investigated the fluorination of graphene oxide nanoribbons (GONRs) using H2 and F2 gases at low temperature, below 200 °C, with the purpose of elucidating their structure and predicting a fluorination mechanism. The importance of this study is the understanding of how fluorine functional groups are incorporated in complex structures, such as GONRs, as a function of temperature. The insight provided herein can potentially help engineer application-oriented materials for several research and industrial sectors.

View Article and Find Full Text PDF