Objectives: To assess the safety and efficacy of radiofrequency ablation (RFA) guidance software that incorporated patient-specific physics-based simulation of each ablation volume.
Materials And Methods: Patients referred for curative ablation of hepatocellular carcinoma (HCC) of 2-5 cm diameter were prospectively enrolled. RFA was performed under general anesthesia.
Rationale And Objectives: CT-guided radiofrequency ablation (RFA) is a potentially curative minimally invasive treatment for liver cancer. Local tumor recurrence limits the success of RFA for large or irregular tumors as it is difficult to visualize the tissue destroyed. This study was designed to validate a real-time software-simulated ablation volume for intraprocedural guidance.
View Article and Find Full Text PDFMagnetic Resonance-Electrical Properties Tomography (MR-EPT) is an imaging modality that maps the spatial distribution of the electrical conductivity and permittivity using standard MRI systems. The presence of a body within the scanner alters the RF field, and by mapping these alterations it is possible to recover the electrical properties. The field is time-harmonic, and can be described by the Helmholtz equation.
View Article and Find Full Text PDFElectrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones.
View Article and Find Full Text PDFElectrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments' PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules.
View Article and Find Full Text PDF