Publications by authors named "A Bornschlegl"

Perovskite solar cells (PSCs) have recently achieved over 26 % power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like Spiro-OMeTAD and PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.

View Article and Find Full Text PDF
Article Synopsis
  • Emerging photovoltaics require radiation-hard materials for use in outer space, but predicting their resilience to high-energy radiation is currently a challenge.
  • The research combines lab automation and machine learning to rapidly identify and test over 130 organic hole transport materials, assessing their stability under UVC light exposure.
  • Findings reveal that materials with fused aromatic rings are more stable, while certain chemical groups negatively impact stability, providing valuable insights for future molecular design in creating durable semiconductors.
View Article and Find Full Text PDF

Background Aims: Roux en y anastomosis is a preferred method of biliary reconstruction in liver transplantation that involves living donors or pediatric patients. However, biliary stricture is a frequent and serious complication, accounting for up to 40% of biliary complications in these patients. Previously, we demonstrated that extraluminal delivery of adipose-derived (AD) mesenchymal stromal cells (MSCs) decreased peri-biliary fibrosis and increased neo-angiogenesis in a porcine model of duct-to-duct biliary anastomosis.

View Article and Find Full Text PDF

Two-dimensional halide perovskite nanoplatelets (NPLs) have exceptional light-emitting properties, including wide spectral tunability, ultrafast radiative decays, high quantum yields (QY), and oriented emission. Due to the high binding energies of electron-hole pairs, excitons are generally considered the dominant species responsible for carrier transfer in NPL films. To realize efficient devices, it is imperative to understand how exciton transport progresses therein.

View Article and Find Full Text PDF

Background: The rise of investigative and commercially available cell therapy products adds a new dynamic to academic medical centers; that is, the management of patient-specific cell products. The scope of cell therapy has rapidly expanded beyond in-house collection and infusion of cell products such as bone marrow and peripheral blood transplant. The complexities and volumes of cell therapies are likely to continue to become more demanding.

View Article and Find Full Text PDF