Publications by authors named "A Boreave"

This study investigated the redox exsolution of Ni nanoparticles from a nanoporous LaSrTiNiO perovskite. The characteristics of exsolved Ni nanoparticles including their size, population, and surface concentration were deeply analyzed by environmental scanning electron microscopy (ESEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) mapping, and hydrogen temperature-programmed reduction (H-TPR). Ni exsolution was triggered in hydrogen as early as 400 °C, with the highest catalytic activity for low-temperature CO oxidation achieved after a reduction step at 500 °C, despite only a 10% fraction of Ni exsolved.

View Article and Find Full Text PDF

Electrochemical NOx sensors based on yttria-stabilized zirconia (YSZ) provide a reliable onboard way to control NOx emissions from glass-melting furnaces. The main limitation is the poisoning of this sensor by sulfur oxides (SOx) contained in the stream. To overcome this drawback, an "SO trap" with high SOx storage capacity and low affinity to NOx is required.

View Article and Find Full Text PDF

Photochemical aging of volatile organic compounds (VOCs) in the atmosphere is an important source of secondary organic aerosol (SOA). To evaluate the formation potential of SOA at an urban site in Lyon (France), an outdoor experiment using a Potential Aerosol Mass (PAM) oxidation flow reactor (OFR) was conducted throughout entire days during January-February 2017. Diurnal variation of SOA formations and their correlation with OH radical exposure (OHexp), ambient pollutants (VOCs and particulate matters, PM), Relative Humidity (RH), and temperature were explored in this study.

View Article and Find Full Text PDF

Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted.

View Article and Find Full Text PDF

In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber.

View Article and Find Full Text PDF