Publications by authors named "A Bonincontro"

Functionalized carbon nanotubes (CNTs) have shown great promise in several biomedical contexts, spanning from drug delivery to tissue regeneration. Thanks to their unique size-related properties, single-walled CNTs (SWCNTs) are particularly interesting in these fields. However, their use in nanomedicine requires a clear demonstration of their safety in terms of tissue damage, toxicity and pro-inflammatory response.

View Article and Find Full Text PDF

Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques.

View Article and Find Full Text PDF

One of the research lines developed in our laboratory is focused on the study of the bioactivity of natural substances. Resveratrol (RV) is a polyphenol nonflavonoid compound present in a number of plant species but mainly in the berries of the red grape Vitis vinifera. The powerful antioxidant action of this molecule is well documented.

View Article and Find Full Text PDF

The design of biocompatible polyelectrolyte complexes is a promising strategy for in vivo delivery of biologically active macromolecules. Particularly, the condensation of DNA by polycations received considerable attention for its potential in gene delivery applications, where the development of safe and effective non-viral vectors remains a central challenge. Among polymeric polycations, Chitosan has recently emerged as a very interesting material for these applications.

View Article and Find Full Text PDF

Single walled carbon nanotubes have singular physicochemical properties making them attractive in a wide range of applications. Studies on carbon nanotubes and biological macromolecules exist in literature. However, ad hoc investigations are helpful to better understand the interaction mechanisms.

View Article and Find Full Text PDF