Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).
View Article and Find Full Text PDFPreclinical and clinical studies suggest that chronic administration of cytotoxic drugs (e.g., chemotherapy) may contribute to the occurrence of skeletal muscle wasting and weakness/fatigue (i.
View Article and Find Full Text PDFThe preparation of planetary missions as well as the analysis of their data require a wide use of planetary simulants. They are very important for both testing mission operations and payloads, and for interpreting remote sensing data. In this work, a detailed analysis of three commercially available simulants of Martian dust and regolith is presented.
View Article and Find Full Text PDFChitosan (Ch), a natural polysaccharide, is known for its biocompatibility, biodegradability, and various beneficial properties, including antioxidant and antibacterial activities. The objective of this study is to investigate the functionalization of zinc oxide (ZnO) with chitosan to develop a novel ZnO@Ch adduct for use in cosmetic formulations, specifically as a sun protection agent. The functionalization was achieved through ionotropic gelation, which enhanced the stability and reduced the photocatalytic activity of ZnO, thereby improving its safety profile for skin applications.
View Article and Find Full Text PDFCOF engineering with a built-in, high concentration of defined N-doped sites overcomes the "black-box" drawback of conventional trial-and-error N-doping methods (used in polymeric carbon nitride and graphene), that hamper a directed evolution of functional carbon interfaces based on structure-reactivity guidelines. The cutting-edge challenge is to dissect the many complex and interdependent functions that originate from reticular N-doping, including modification of the material optoelectronics, band alignments, interfacial contacts and co-localization of active-sites, producing a multiple-set of effectors that can all play a role to regulate photocatalysis. Herein, an ON-OFF gated photocatalytic H evolution (PHE) is dictated by the Pt-N-carbon active sites and probed with a dual COF platform, based on stable β-ketoenamine connectivities made of triformylphloroglucinol (Tp) as the acceptor knots and 1,4-diaminonaphtalene (Naph) or 5,8-diaminoisoquinoline (IsoQ) as donors.
View Article and Find Full Text PDF