Duchenne muscular dystrophy (DMD) is caused by mutations in the gene encoding dystrophin, a subsarcolemmal protein whose absence results in increased susceptibility of the muscle fiber membrane to contraction-induced injury. This results in increased calcium influx, oxidative stress, and mitochondrial dysfunction, leading to chronic inflammation, myofiber degeneration, and reduced muscle regenerative capacity. Fast glycolytic muscle fibers have been shown to be more vulnerable to mechanical stress than slow oxidative fibers in both DMD patients and DMD mouse models.
View Article and Find Full Text PDFHandedness has been a topic of scientific interest for many years. However, false and misleading ideas have dominated this field with a still limited amount of research into the association with clinical disorders like Alzheimer disease (AD). In accordance with PRISMA guidelines, PubMed, Embase, and Cochrane Library were searched for studies regarding the association of handedness and AD.
View Article and Find Full Text PDFPolymer physics models suggest that chromatin spontaneously folds into loop networks with transcription units (TUs), such as enhancers and promoters, as anchors. Here we use combinatoric arguments to enumerate the emergent chromatin loop networks, both in the case where TUs are labeled and where they are unlabeled. We then combine these mathematical results with those of computer simulations aimed at finding the inter-TU energy required to form a target loop network.
View Article and Find Full Text PDFThe 3D folding of a mammalian gene can be studied by a polymer model, where the chromatin fiber is represented by a semiflexible polymer which interacts with multivalent proteins, representing complexes of DNA-binding transcription factors and RNA polymerases. This physical model leads to the natural emergence of clusters of proteins and binding sites, accompanied by the folding of chromatin into a set of topologies, each associated with a different network of loops. Here, we combine numerics and analytics to first classify these networks and then find their relative importance or statistical weight, when the properties of the underlying polymer are those relevant to chromatin.
View Article and Find Full Text PDF