Resistance to tyrosine kinase inhibitors (TKIs) remains a clinical challenge in Ph-positive variants of chronic myeloid leukemia. We provide mechanistic insights into a previously undisclosed MEK1/2/BCR::ABL1/BCR/ABL1-driven signaling loop that may determine the efficacy of arsenic trioxide (ATO) in TKI-resistant leukemic patients. We find that activated MEK1/2 assemble into a pentameric complex with BCR::ABL1, BCR and ABL1 to induce phosphorylation of BCR and BCR::ABL1 at Tyr360 and Tyr177, and ABL1, at Thr735 and Tyr412 residues thus provoking loss of BCR's tumor-suppression functions, enhanced oncogenic activity of BCR::ABL1, cytoplasmic retention of ABL1 and consequently drug resistance.
View Article and Find Full Text PDFConsidering that Aurora kinase inhibitors are currently under clinical investigation in hematologic cancers, the identification of molecular events that limit the response to such agents is essential for enhancing clinical outcomes. Here, we discover a NF-κB-inducing kinase (NIK)-c-Abl-STAT3 signaling-centered feedback loop that restrains the efficacy of Aurora inhibitors in multiple myeloma. Mechanistically, we demonstrate that Aurora inhibition promotes NIK protein stabilization downregulation of its negative regulator TRAF2.
View Article and Find Full Text PDFConstitutive activation of the canonical and noncanonical nuclear factor-κB (NF-κB) pathways is frequent in multiple myeloma (MM) and can compromise sensitivity to TRAIL. In this study, we demonstrate that Aurora kinases physically and functionally interact with the key regulators of canonical and noncanonical NF-κB pathways IκB kinase β (IKKβ) and IKKα to activate NF-κB in MM, and the pharmacological blockade of Aurora kinase activity induces TRAIL sensitization in MM because it abrogates TRAIL-induced activation of NF-κB. We specifically found that TRAIL induces prosurvival signaling by increasing the phosphorylation state of both Aurora and IKK kinases and their physical interactions, and the blockade of Aurora kinase activity by pan-Aurora kinase inhibitors (pan-AKIs) disrupts TRAIL-induced survival signaling by effectively reducing Aurora-IKK kinase interactions and NF-κB activation.
View Article and Find Full Text PDFAn area of therapeutic interest in cancer biology and treatment is targeting the cancer stem cell, more appropriately referred to as the cancer initiating cell (CIC). CICs comprise a subset of hierarchically organized, rare cancer cells with the ability to initiate cancer in xenografts in genetically modified murine models. CICs are thought to be responsible for tumor onset, self-renewal/maintenance, mutation accumulation and metastasis.
View Article and Find Full Text PDFDysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli.
View Article and Find Full Text PDF