Background: Urban areas are disproportionately affected by multiple pressures from overbuilding, traffic, air pollution, and heat waves that often interact and are interconnected in producing health effects. A new synthetic tool to summarize environmental and climatic vulnerability has been introduced for the city of Rome, Italy, to provide the basis for environmental and health policies.
Methods: From a literature overview and based on the availability of data, several macro-dimensions were identified on 1,461 grid cells with a width of 1 km in Rome: land use, roads and traffic-related exposure, green space data, soil sealing, air pollution (PM, PM, NO, CH, SO), urban heat island intensity.
Policies to improve air quality need to be based on effective plans for reducing anthropogenic emissions. In 2020, the outbreak of COVID-19 pandemic resulted in significant reductions of anthropogenic pollutant emissions, offering an unexpected opportunity to observe their consequences on ambient concentrations. Taking the national lockdown occurred in Italy between March and May 2020 as a case study, this work tries to infer if and what lessons may be learnt concerning the impact of emission reduction policies on air quality.
View Article and Find Full Text PDFDesert dust storms pose real threats to air quality and health of millions of people in source regions, with associated impacts extending to downwind areas. Europe (EU) is frequently affected by atmospheric transport of desert dust from the Northern Africa and Middle East drylands. This investigation aims at quantifying the role of desert dust transport events on air quality (AQ) over Italy, which is among the EU countries most impacted by this phenomenon.
View Article and Find Full Text PDFThis global study, which has been coordinated by the World Meteorological Organization Global Atmospheric Watch (WMO/GAW) programme, aims to understand the behaviour of key air pollutant species during the COVID-19 pandemic period of exceptionally low emissions across the globe. We investigated the effects of the differences in both emissions and regional and local meteorology in 2020 compared with the period 2015-2019. By adopting a globally consistent approach, this comprehensive observational analysis focuses on changes in air quality in and around cities across the globe for the following air pollutants PM, PM, PMC (coarse fraction of PM), NO, SO, NOx, CO, O and the total gaseous oxidant (OX = NO + O) during the pre-lockdown, partial lockdown, full lockdown and two relaxation periods spanning from January to September 2020.
View Article and Find Full Text PDF