C-mannosylation of Trp residue is one of the most recently discovered types of glycosylation, but the identification of these mannosylated residues in proteins is rather tedious. In a previous paper, it was reported that the complete analysis of all constituents of glycoproteins (sialic acids, monosaccharides, and amino acids) could be determined on the same sample in three different steps of gas chromatography/mass spectrometry of heptafluorobutyrate derivatives. It was observed that during the acid-catalyzed methanolysis step used for liberation of monosaccharide from classical O- and N-glycans, Trp and His were quantitatively transformed by the addition of a methanol molecule on their indole and imidazole groups, respectively.
View Article and Find Full Text PDFWe investigate the mobility of the osmoregulated periplasmic glucans of Ralstonia solanacearum in the bacterial periplasm through the use of high-resolution (HR) NMR spectroscopy under static and magic angle spinning (MAS) conditions. Because the nature of periplasm is far from an isotropic aqueous solution, the molecules could be freely diffusing or rather associated to a periplasmic protein, a membrane protein, a lipid, or the peptidoglycan. HR MAS NMR spectroscopy leads to more reproducible results and allows the in vivo detection and characterization of the complex molecule.
View Article and Find Full Text PDFOsmoregulated periplasmic glucans (OPGs) of Escherichia coli are anionic oligosaccharides that accumulate in the periplasmic space in response to low osmolarity of the medium. Their anionic character is provided by the substitution of the glucosidic backbone by phosphoglycerol originating from the membrane phospholipids and by succinyl residues from unknown origin. A phosphoglycerol-transferase-deficient mdoB mutant was subjected to Tn5 transposon mutagenesis, and putative mutant clones were screened for changes in the anionic character of OPGs by thin-layer chromatography.
View Article and Find Full Text PDFThe MdoH protein is essential for synthesis of the osmoregulated periplasmic glucans, known as membrane-derived oligosaccharides (MDOs), in Escherichia coli. Mutants lacking MdoH are deficient in a glucosyltransferase activity assayed in vitro. The MdoH protein is the product of the second gene of an operon, and it has been shown to span the cytoplasmic membrane.
View Article and Find Full Text PDF