Publications by authors named "A Bogomazova"

Spinocerebellar ataxia type 17 (SCA17) is a hereditary neurodegenerative disorder characterized by progressive motor and cognitive decline, leading to severe disability and death. SCA17 is caused by a CAG repeat expansion mutation in the TBP gene, resulting in the production of an abnormally long polyglutamine tract, which classifies it as a polyglutamine disorder. At present, there is no effective treatment for SCA17, and existing therapies provide only symptomatic relief.

View Article and Find Full Text PDF

Filamin C (FLNC) is a member of a high-molecular weight protein family, which bind actin filaments in the cytoskeleton of various cells. In human genome FLNC is encoded by the gene located on chromosome 7 and is expressed predominantly in striated skeletal and cardiac muscle cells. Filamin C is involved in organization and stabilization of thin actin filaments three-dimensional network in sarcomeres, and is supposed to play a role of mechanosensor transferring mechanical signals to different protein targets.

View Article and Find Full Text PDF
Article Synopsis
  • Expansion of CAG repeats in certain genes is linked to neurodegenerative diseases, but the mechanisms are not well understood; this study investigates how these repeats interact with RNA editing enzymes like ADAR.
  • Researchers used induced pluripotent stem cells (iPSCs) and brain organoids from Huntington's disease and ataxia type 17 patients to analyze RNA editing via next-generation sequencing.
  • Results showed that while some brain organoids with specific CAG repeats had decreased RNA editing, most cultures did not support the hypothesis that CAG repeats affect editing levels significantly.
View Article and Find Full Text PDF

Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy.

View Article and Find Full Text PDF