Publications by authors named "A Bisai"

Intermolecular oxidative N-N bond formation reactions are quite challenging and are largely uncharted. N-N linked dimeric indolosesquiterpene alkaloids represent an underexplored class of natural products, and strategies for direct dehydrogenative N-N bond formation are limited. Here, we have reported that a late-stage visible-light photoredox catalysis facilitates N-N bond formation, leading to the total syntheses of atropo-diastereomers dixiamycins A () and B ().

View Article and Find Full Text PDF

The first asymmetric total synthesis of the tetraterpenoid (+)-7,7'-bistaxodione () via a unique late-stage electrochemical oxidative dimerization of a diterpenoid quinone methide tumor Inhibitor (+)-taxodione () has been described. The naturally occurring monomer was synthesized from aromatic abietane diterpenoid, ferruginol (1e) . Further, an efficient convergent synthetic route toward the naturally occurring aromatic abietane terpenoids has been shown via a Lewis acid-mediated diastereoselective cationic epoxy-ene cyclization.

View Article and Find Full Text PDF

Natural product synthesis has been the prime focus for the development of new chemical transformations and the drug discovery. The dimeric and oligomeric hexahydropyrrolo[2,3-b]indole alkaloids represent a architecturally intriguing class of cyclotryptamine alkaloids. These alkaloids share contiguous stereogenic centers with vicinal all-carbon quaternary stereogenic centers.

View Article and Find Full Text PDF

We envisioned a novel asymmetric strategy to access unsymmetrically substituted dimeric 2-oxindoles [(,)- and (,)-] for the total synthesis of calycanthidine (). The key to success is the development of efficient Pd(0)-catalyzed asymmetric sequential allylations [via a highly enantioselective [up to 94% enantiomeric excess (ee)] and diastereoselective (up to ∼13:1) process] of unsymmetrically protected dimeric 2-oxindoles at the 3,3' position [such as (,)- and (,)-]. Gratifyingly, a mixture of bis-ester (±)-, ester-carbonates (±)- and (±)-, and bis-carbonate could afford (,)- and (,)- in highly stereoselective fashion, thereby culminating in the total synthesis of (+)-calycanthidine [-()] and (-)-calycanthidine ().

View Article and Find Full Text PDF

The asymmetric syntheses of naturally occurring biologically relevant -abietane diterpenoids, (-)-taiwaniaquinone G (), and H () have been reported via a chiral pool strategy starting from commercially available abietic acid. A ring contraction of the middle ring of the [6,6,6]-carbotricyclic abietane diterpenoid core was carried out under the Wolff rearrangement. Finally, the synthesis of (-)-taiwaniaquinone H () was completed via a one-pot CAN-mediated oxidative decarboxylation.

View Article and Find Full Text PDF