Publications by authors named "A Biague"

Despite low or undetectable plasma viral load, people living with HIV-2 (PLWH2) typically progress toward AIDS. The driving forces behind HIV-2 disease progression and the role of viremia are still not known, but low-level replication in tissues is believed to play a role. To investigate the impact of viremic and aviremic HIV-2 infection on target and bystander cell pathology, we used data-independent acquisition mass spectrometry to determine plasma signatures of tissue and cell type engagement.

View Article and Find Full Text PDF

HIV-2 infection will progress to AIDS in most patients without treatment, albeit at approximately half the rate of HIV-1 infection. HIV-2 capsid (p26) amino acid polymorphisms are associated with lower viral loads and enhanced processing of T cell epitopes, which may lead to protective Gag-specific T cell responses common in slower progressors. Lower virus evolutionary rates, and positive selection on conserved residues in HIV-2 have been associated with slower progression to AIDS.

View Article and Find Full Text PDF

Limited data are available on the pathogenesis of HIV-2, and the evolution of Env molecular properties during disease progression is not fully elucidated. We investigated the intra-patient evolution of molecular properties of HIV-2 Env regions (V1-C3) during the asymptomatic, treatment-naïve phase of the infection in 16 study participants, stratified into faster or slower progressors. Most notably, the rate of change in the number of potential N-linked glycosylation sites (PNGS) within the Env (V1-C3) regions differed between progressor groups.

View Article and Find Full Text PDF

Time to AIDS in HIV-2 infection is approximately twice as long compared to in HIV-1 infection. Despite reduced viremia, HIV-2-infected individuals display signs of chronic immune activation. In HIV-1-infected individuals, B-cell hyperactivation is driven by continuous antigen exposure.

View Article and Find Full Text PDF

HIV-2 is less pathogenic compared to HIV-1. Still, disease progression may develop in aviremic HIV-2 infection, but the driving forces and mechanisms behind such development are unclear. Here, we aimed to reveal the immunophenotypic pattern associated with CD8 T-cell pathology in HIV-2 infection, in relation to viremia and markers of disease progression.

View Article and Find Full Text PDF