Publications by authors named "A Bertron"

It is now well established that biological pollution is a major cause of the degradation of indoor air quality. It has been shown that microbial communities from the outdoors may significantly impact the communities detected indoors. One can reasonably assume that the fungal contamination of the surfaces of building materials and their release into indoor air may also significantly impact indoor air quality.

View Article and Find Full Text PDF

WO is a known photocatalytic metal oxide frequently studied for its depollution properties. However, it suffers from a high recombination rate of the photogenerated electron/holes pair that is detrimental to its performance. In this paper, we present a new chemical method to decorate WO nanoleaves (NLs) with a complementary metal oxide (ZnWO) in order to improve the photocatalytic performance of the composite material for the abatement of 400 ppb NO under mild UV exposure.

View Article and Find Full Text PDF

The biodeterioration of cement-based materials in sewer environments occurs because of the production of sulfuric acid from the biochemical oxidation of HS by sulfur-oxidizing bacteria (SOB). In the perspective of determining the possible reaction pathways for the sulfur cycle in such conditions, hydrated cementitious binders were exposed to an accelerated laboratory test (BAC test) to reproduce a biochemical attack similar to the one occurring in the sewer networks. Tetrathionate was used as a reduced sulfur source to naturally develop sulfur-oxidizing activities on the surfaces of materials.

View Article and Find Full Text PDF

Concretes can be exposed to a magnesium attack in several environments leading to the formation of magnesium silicate hydrates (M-S-H) and brucite (MH). The formation of M-S-H is likely to alter the properties of the cement matrix because it is linked to the decalcification of C-S-H. However, relatively few data on M-S-H exist in the literature.

View Article and Find Full Text PDF

Concrete structures of anaerobic digestion plants face chemically aggressive conditions due to the contact with the complex liquid fraction of the fermenting biowaste. This paper aims to determine the biogeochemical dynamic interaction phenomena at play between the biowaste and cementitious matrices at the local scale, and to identify durable binders in such environments. Binder materials likely to show increased durability - slag and calcium aluminate cement, and a metakaolin-based alkali-activated geopolymer - and a reference Portland cement were inserted into sealed bioeactors during 5 cycles (245 days) of broken maize anaerobic digestion.

View Article and Find Full Text PDF