Midbrain dopamine neurons are well-known to shape central nervous system function, yet there is growing evidence for their influence on the peripheral immune systems. Here we demonstrate that midbrain dopamine neurons form a circuit to the spleen via a multisynaptic pathway from the dorsal vagal complex (DVC) through the celiac ganglion. Midbrain dopamine neurons modulate the activity of D1-like and D2-like dopamine receptor-expressing DVC neurons.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Despite significant progress in understanding the molecular aetiology of muscle atrophy, there is still a great need for new targets and drugs capable of counteracting muscle wasting. The role of an impaired proteostasis as the underlying causal mechanism of muscle atrophy is a well-established concept. From the earliest work on muscle atrophy and the identification of the first atrogenes, the hyper-activation of the proteolytic systems, such as autophagy and the ubiquitin proteasome system, has been recognized as the major driver of atrophy.
View Article and Find Full Text PDFEukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods.
View Article and Find Full Text PDFA 9-month-old female Jack Russell Terrier was referred because of two episodes of suspected syncope. Echocardiography revealed a large, isolated mid-muscular ventricular septal defect (7 mm) with bidirectional shunting. A diagnosis of Eisenmenger syndrome and erythrocytosis (68.
View Article and Find Full Text PDF