We investigate the experimental control of pair tunneling in a double-well potential using Floquet engineering. We demonstrate a crossover from a regime with density-assisted tunneling to dominant pair tunneling by tuning the effective interactions. Furthermore, we show that the pair tunneling rate can be enhanced not only compared to the Floquet-reduced single-particle tunneling but even beyond the static superexchange rate, while keeping the effective interaction in a relevant range.
View Article and Find Full Text PDFMany-body interference between indistinguishable particles can give rise to strong correlations rooted in quantum statistics. We study such Hanbury Brown-Twiss-type correlations for number states of ultracold massive fermions. Using deterministically prepared ^{6}Li atoms in optical tweezers, we measure momentum correlations using a single-atom sensitive time-of-flight imaging scheme.
View Article and Find Full Text PDFAccess to single-particle momenta provides new means of studying the dynamics of a few interacting particles. In a joint theoretical and experimental effort, we observe and analyze the effects of a finite number of ultracold two-body collisions on the relative and single-particle densities by quenching two ultracold atoms with an initial narrow wave packet into a wide trap with an inverted aspect ratio. The experimentally observed spatial oscillations of the relative density are reproduced by a parameter-free zero-range theory and interpreted in terms of cross-dimensional flux.
View Article and Find Full Text PDFWe have prepared two ultracold fermionic atoms in an isolated double-well potential and obtained full control over the quantum state of this system. In particular, we can independently control the interaction strength between the particles, their tunneling rate between the wells and the tilt of the potential. By introducing repulsive (attractive) interparticle interactions we have realized the two-particle analog of a Mott-insulating (charge-density-wave) state.
View Article and Find Full Text PDFWe study quasi-one-dimensional few-particle systems consisting of one to six ultracold fermionic atoms in two different spin states with attractive interactions. We probe the system by deforming the trapping potential and by observing the tunneling of particles out of the trap. For even particle numbers, we observe a tunneling behavior that deviates from uncorrelated single-particle tunneling indicating the existence of pair correlations in the system.
View Article and Find Full Text PDF