Diabetes-induced vasculopathies are linked to inflammation mediated by mutually inhibitory nuclear factor-kappaB (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). NF-κB is activated by superoxide (O )- producing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase homologues, including NADPH oxidase 2 (Nox2), and vice versa, with NF-κB inducing Nox2. Nrf2 is activated by HO-producing Nox4 and nitric oxide (NO), but also induces NADPH oxidase 4 (Nox4) and endothelial nitric oxide synthase (eNOS).
View Article and Find Full Text PDFThe superoxide-forming NADPH oxidase homologues, Nox1, Nox2, and Nox5, seem to mediate the pro-atherosclerotic vascular phenotype. The hydrogen peroxide-forming Nox4 afforded vascular protection, likely via NF-E2-related factor-2 (Nrf2) activation and/or Nox2 downregulation in transgenic mice. We hypothesized that oxidative stress in the intact vasculature involves, aside from the upregulation of the superoxide-forming Noxs, the downregulation of the Nox4/Nrf2 pathway.
View Article and Find Full Text PDFOne of the aspects of ammonia toxicity to brain cells is increased production of nitric oxide (NO) by NO synthases (NOSs). Previously we showed that ammonia increases arginine (Arg) uptake in cultured rat cortical astrocytes specifically via y(+)L amino acid transport system, by activation of its member, a heteromeric y(+)LAT2 transporter. Here, we tested the hypothesis that up-regulation of y(+)LAT2 underlies ammonia-dependent increase of NO production via inducible NOS (iNOS) induction, and protein nitration.
View Article and Find Full Text PDFWe hypothesized that, due to a cross-talk between cytoplasmic O2--sources and intraluminally expressed xanthine oxidase (XO), intraluminal O2- is instrumental in mediating intraluminal (endothelial dysfunction) and cytosolic (p38 and ERK1/2 MAPKs phosphorylation) manifestations of vascular oxidative stress induced by endothelin-1 (ET-1) and angiotensin II (AT-II). Isolated guinea-pig hearts were subjected to 10-min agonist perfusion causing a burst of an intraluminal O2-. ET-1 antagonist, tezosentan, attenuated AT-II-mediated O2-, indicating its partial ET-1 mediation.
View Article and Find Full Text PDF