Background: The mesenteric venous reservoir plays a vital role in mediating blood volume and pressure changes and is richly innervated by sympathetic nerves; however, the precise nature of venous sympathetic regulation and its role during hypertension remains unclear. We hypothesized that sympathetic drive to mesenteric veins in spontaneously hypertensive (SH) rats is raised, increasing mean circulatory filling pressure (MCFP), and impairing mesenteric capacitance.
Methods: Arterial pressure, central venous pressure, mesenteric arterial, and venous blood flow were measured simultaneously in conscious male Wistar and SH rats.
This paper presents mathematical models that can simulate the cardiovascular system of a healthy sheep under normal resting conditions in which the heart rate changes significantly. The models include several new modelling features that are introduced progressively. The contraction of the cardiac chambers is modelled using a time-dependent muscle force with constant elasticity instead of time dependent elasticity.
View Article and Find Full Text PDFJ Math Biol
September 2021
This paper is motivated by a question related to the control of amplitude and frequency of breathing. We present a simplified mathematical model, consisting of two piecewise linear ordinary differential equations, that could represent gas exchange in the lungs. We then define and solve an optimal control problem with unknown durations of inhalation and exhalation, subject to several constraints.
View Article and Find Full Text PDFThe respiratory rhythm generator is spectacular in its ability to support a wide range of activities and adapt to changing environmental conditions, yet its operating mechanisms remain elusive. We show how selective control of inspiration and expiration times can be achieved in a new representation of the neural system (called a Boolean network). The new framework enables us to predict the behavior of neural networks based on properties of neurons, not their values.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2018
The cardiorespiratory system exhibits oscillations from a range of sources. One of the most studied oscillations is heart rate variability, which is thought to be beneficial and can serve as an index of a healthy cardiovascular system. Heart rate variability is dampened in many diseases including depression, autoimmune diseases, hypertension, and heart failure.
View Article and Find Full Text PDF