Background: It is unclear whether maintaining pulmonary perfusion and ventilation during cardiopulmonary bypass (CPB) reduces pulmonary inflammatory tissue injury compared with standard CPB where the lungs are not ventilated and are minimally perfused. In this study, we tested the hypothesis that maintenance of lung perfusion and ventilation during CPB decreases regional lung inflammation, which may result in less pulmonary structural damage.
Methods: Twenty-seven pigs were randomly allocated into a control group only submitted to sternotomy (n = 8), a standard CPB group (n = 9), or a lung perfusion group (n = 10), in which lung perfusion and ventilation were maintained during CPB.
Background: The impact of cardiac surgery using cardiopulmonary bypass (CPB) on the respiratory mucociliary function is unknown. This study evaluated the effects of CPB and interruption of mechanical ventilation on the respiratory mucociliary system.
Methods: Twenty-two pigs were randomly assigned to the control (n = 10) or CPB group (n = 12).
Obectives: Spinal cord ischaemia with resulting paraplegia remains a devastating and unpredictable complication after thoraco-abdominal aortic surgery. With the advent of stem cell therapy and its potential to induce nervous tissue regeneration processes, the interest in the use of these cells as a treatment for neurological disorders has increased. Human stem cells, derived from the umbilical cord, are one of the strong candidates used in cell therapy for spinal cord injury because of weak immunogenicity and ready availability.
View Article and Find Full Text PDFObjective: To evaluate the short and medium-term outcomes of patients undergoing robotic-assisted minimally invasive cardiac surgery.
Methods: From March 2010 to March 2013, 21 patients underwent robotic-assisted cardiac surgery. The procedures performed were: mitral valve repair, mitral valve replacement, surgical correction of atrial fibrillation, surgical correction of atrial septal defect, intracardiac tumor resection, totally endoscopic coronary artery bypass surgery and pericardiectomy.
Objective: Right ventricular (RV) failure during left ventricular assist device (LVAD) support can result in severe hemodynamic compromise with high mortality. This study investigated the acute effects of cavo-pulmonary anastomosis on LVAD performance and RV myocardial compromise in comparison with biventricular circulatory support, in a model of biventricular failure.
Methods: LVAD support was performed by centrifugal pump in 21 pigs with severe biventricular failure obtained by FV induction.