This article describes a contribution to the field of telerobotics via the Internet through the development of a web-based platform allowing the remote control of robots by multiple users, simultaneously. It also deals with minimizing the execution times of tasks by reducing connection and interaction delays. For this purpose, the () technology is utilized.
View Article and Find Full Text PDFWhen assembled in periodic arrangements, metallic nanostructures (NSs) support plasmonic surface lattice (SL) resonances resulting from long-range interactions these surface lattice resonances differ radically from localized surface plasmon (LSP). Similarly to the hybridization of LSP resonances, observed in short-range interactions, we demonstrate the possibility to generate a hybridization of surface lattice (SL) plasmon resonances, by the excitation of grazing order diffraction within the metasurface. This hybridization leads to the emergence of and modes.
View Article and Find Full Text PDFAdvances in optical trapping design principles have led to tremendous progress in manipulating nanoparticles (NPs) with diverse functionalities in different environments using bulky systems. However, efficient control and manipulation of NPs in harsh environments require a careful design of contactless optical tweezers. Here, we propose a simple design of a fibered optical probe allowing the trapping of dielectric NP as well as a transfer of the angular momentum of light to the NP inducing its mechanical rotation.
View Article and Find Full Text PDFThe symmetry breaking in a typical dielectric GMR-grating structure allows the coupling of the incident wave with the so-called Symmetry-Protected Modes (SPM). In this present work, the excitation conditions of such particular modes are investigated. A parametric study including the grating dimensions is carried out to exploit them for a blood refractive index sensing with higher Sensitivity (S) and Figure Of Merit (FOM).
View Article and Find Full Text PDF