Publications by authors named "A Bedair"

Metal-organic frameworks (MOFs) have emerged as innovative nanozyme mimics, particularly in the area of oxidase catalysis, outperforming traditional MOF-based peroxidase and other nanomaterial-based oxidase systems. This review explores the various advantages that MOFs offer in terms of catalytic activity, low-cost, stability, and structural versatility. With a primary focus on their application in biochemical sensing, MOF-based oxidases have demonstrated remarkable utility, prompting a thorough exploration of their design and modification strategies.

View Article and Find Full Text PDF

Capillary electrophoresis (CE) is a powerful analysis technique with advantages such as high separation efficiency with resolution factors above 1.5, low sample consumption of less than 10 µL, cost-effectiveness, and eco-friendliness such as reduced solvent use and lower operational costs. However, CE also faces limitations, including limited detection sensitivity for low-concentration samples and interference from complex biological matrices.

View Article and Find Full Text PDF

Organofluorines have a broad range of industrial applications, such as pharmaceuticals, liquid crystal displays (LCDs), solar cells, textiles, and construction coatings, and are used in peptidomimetics, surfactants, refrigerants, anesthetics, and agrochemicals. Among them are versatile monofluoroalkenes that play a crucial role in medicinal and synthetic chemistry. The synthetic strategies for this class of molecules are limited, and prior efforts frequently suffered from poor atom- and step-economies.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a fascinating family of crystalline porous materials made up of metal clusters and organic linkers. In comparison with other porous materials, MOFs have unique characteristics including high surface area, homogeneous open cavities, and permanent high porosity with variable shapes and sizes. For these reasons, MOFs have recently been explored as sorbents in sample preparation by solid-phase extraction (SPE).

View Article and Find Full Text PDF

Entresto™ (LCZ696) has been approved globally for heart failure management. However, its lifelong use alongside over-the-counter (OTC) drugs like ibuprofen (IBU) and fexofenadine (FEX) necessitates an in-depth investigation of potential pharmacokinetic interactions, as they share the same metabolic and elimination pathways. This study aimed to develop a bioanalytical HPLC method with a fluorescence detector (FLD) to quantify LCZ696 analytes (valsartan, VAL; sacubitril, SAC; and sacubitril active metabolite, LBQ657) in rat plasma.

View Article and Find Full Text PDF