Publications by authors named "A Baylay"

Background: Resistance nodulation division (RND) family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance. Expression of these pumps is carefully controlled by a network of regulators that respond to different environmental cues. EnvR is a TetR family transcriptional regulator encoded upstream of the RND efflux pump acrEF.

View Article and Find Full Text PDF

Photosynthesis holds the promise of sustainable generation of useful products using light energy. Key to realizing this potential is the ability to rationally design photosynthesis to redirect energy and reductant derived from photons to desired products. Cytochrome P450s (P450s), which catalyze a broad array of reactions, have been engineered into a variety of photosynthetic organisms, where their activity has been shown to be photosynthesis-dependent, thus acting as heterologous sinks of electrons derived from photosynthesis.

View Article and Find Full Text PDF

The filamentous diazotrophic cyanobacterium Trichodesmium is responsible for a significant fraction of marine di-nitrogen (N) fixation. Growth and distribution of Trichodesmium and other diazotrophs in the vast oligotrophic subtropical gyres is influenced by iron (Fe) and phosphorus (P) availability, while reciprocally influencing the biogeochemistry of these nutrients. Here we use observations across natural inverse gradients in Fe and P in the North Atlantic subtropical gyre (NASG) to demonstrate how Trichodesmium acclimates in situ to resource availability.

View Article and Find Full Text PDF

Gut microbiota are important for the health, fitness and development of animal hosts, but little is known about these assemblages in wild populations of fish. Such knowledge is particularly important for juvenile life stages where nutritional intake critically determines early development, growth, and ultimately recruitment. We characterise the microbiome inhabiting the gut of young-of-the-year European plaice ('YOY plaice') on sandy beaches, their key juvenile habitat, and examine how these microbial communities vary spatially in relation to diet and nutritional condition of their plaice hosts.

View Article and Find Full Text PDF

Increasing influence of Atlantic water in the Arctic Ocean has the potential to significantly impact regional water temperature and salinity. Here we use a rDNA barcoding approach to reveal how microbial communities are partitioned into distinct assemblages across a gradient of Atlantic-Polar Water influence in the Norwegian Sea. Data suggest that temperate adapted bacteria may replace cold water taxa under a future scenario of increasing Atlantic influence, but the eukaryote response is more complex.

View Article and Find Full Text PDF