Compound A (3-{2-oxo-3-[3-(5,6,7,8-tetrahydro-[1,8]napthyridin-2-yl)propyl]-imidazolidin-1-yl}-3(S)-(6-methoxy-pyridin-3-yl)propionic acid), a hydrophilic zwitter-ion, is a potent and selective alphavbeta3 integrin antagonist currently under clinical development for the treatment of osteoporosis. The mechanism of renal excretion of compound A was investigated using a combination of in vivo and in vitro approaches. In rats, renal excretion of compound A involved tubular secretion; ratios between renal clearance, corrected for unbound fraction in plasma (CLr,u) and glomerular filtration rate (GFR) were greater than unity (2-5).
View Article and Find Full Text PDF1. The disposition of 3-[2-oxo-3-[3-(5,6,7,8-tetrahydro-[1,8]naphthyridin-2-yl) propyl]-imidazolidin-1-yl]-3(S)-(6-methoxy-pyridin-3-yl)propionic acid (compound A), a potent and selective alpha(v)beta(3) antagonist, was characterized in several animal species in support of its selection for preclinical safety studies and potential clinical development. 2.
View Article and Find Full Text PDFA series of novel, highly potent alpha(v)beta(3) receptor antagonists with favorable pharmacokinetic profiles has been identified. In this series of antagonists, 2-aryl beta-amino acids function as potent aspartic acid replacements.
View Article and Find Full Text PDFPurpose: The objective of this study was to compare plasma concentrations of timolol following multiple dosing of the therapeutic regimens of timolol maleate ophthalmic gel-forming solution (Timolol GS; TIMOPTIC-XE) and timolol maleate ophthalmic solution. Timolol maleate ophthalmic gel-forming solution is also referred to as Timolol GS, i.e.
View Article and Find Full Text PDFalpha(1) Adrenergic receptors mediate both vascular and lower urinary tract tone, and alpha(1) receptor antagonists such as terazosin (1b) are used to treat both hypertension and benign prostatic hyperplasia (BPH). Recently, three different subtypes of this receptor have been identified, with the alpha(1A) receptor being most prevalent in lower urinary tract tissue. This paper explores 4-aryldihydropyrimidinones attached to an aminopropyl-4-arylpiperidine via a C-5 amide as selective alpha(1A) receptor subtype antagonists.
View Article and Find Full Text PDF