Colloidal oil-in-water nanoemulsions are gaining increasing interest as a nanoparticle delivery system because of their large oil droplet core that can carry a large payload. In order to formulate these particles with long-term stability, an appropriate oil media and block copolymer pair must be selected. The interaction between the nanoemulsion core and the polymer shell is critical to forming stable nanoparticles.
View Article and Find Full Text PDFBackground: In head trauma cases involving antiplatelet agent treatment, the French Society of Emergency Medicine recommends performing computed tomography (CT) scans to detect brain lesions, 90% of which are normal. The value of CT is still debatable given the scarce number of studies and controversial results.
Methods: We used the RATED registry (Registry of patient with Antithrombotic agents admitted to an Emergency Department, NCT02706080) to assess factors of cerebral bleeding related to antiplatelet agents following head trauma.
A highly sensitive photonic sensor based on a porous silicon ring resonator was developed and experimentally characterized. The photonic sensing structure was fabricated by exploiting a porous silicon double layer, where the top layer of a low porosity was used to form photonic elements by e-beam lithography and the bottom layer of a high porosity was used to confine light in the vertical direction. The sensing performance of the ring resonator sensor based on porous silicon was compared for the different resonances within the analyzed wavelength range both for transverse-electric and transverse-magnetic polarizations.
View Article and Find Full Text PDFThe presence of a perfluorocarbon block in a multiblock polymer has been shown to be an additional driving force toward nanoparticle assembly. In the preparation of nanoemulsions, this perfluorocarbon block also provides enhanced particle stability. Herein, the synthesis of a new triphilic, semifluorinated copolymer, M2F8H18, is introduced.
View Article and Find Full Text PDF