Background: In kidney damage, molecular changes can be used as early damage kidney biomarkers, such as Kidney Injury Molecule-1 and Neutrophil gelatinase-associated lipocalin. These biomarkers are associated with toxic metal exposure or disturbed homeostasis of trace elements, which might lead to serious health hazards. This study aimed to evaluate the relationship between exposure to trace elements and early damage kidney biomarkers in a pediatric population.
View Article and Find Full Text PDFBackground: In recent years, chronic kidney disease has increased in the pediatric population and has been related to environmental factors. In the diagnosis of kidney damage, in addition to the traditional parameters, early kidney damage biomarkers, such as kidney injury molecule 1, cystatin C, and osteopontin, among others, have been implemented as predictors of early pathological processes.
Objective: This study aimed to evaluate the relationship between exposure to environmental pollutants and early kidney damage biomarkers.
The developmental period in utero is a critical window for environmental exposure. Epigenetic fetal programming via DNA methylation is a pathway through which metal exposure influences the risk of developing diseases later in life. Genetic damage repair can be modified by alterations in DNA methylation, which, in turn, may modulate gene expression due to metal exposure.
View Article and Find Full Text PDFArsenic (As) and fluoride (F) are two common groundwater toxicants. The toxicity of As is closely related to As metabolism, and several biological and environmental factors have been associated with As modification. However, limited information about the effect of F exposure on the modification of the As metabolism profile has been described.
View Article and Find Full Text PDFExposure to inorganic fluoride (F) has been implicated in cardiovascular and kidney dysfunction mainly in adult populations. However, limited epidemiological information from susceptible populations, such as children, is available. In this study we evaluated the relationship of F exposure with some vascular and kidney injury biomarkers in children.
View Article and Find Full Text PDF