Adsorption-based processes are showing substantial potential for carbon capture. Due to the vast space of potential solid adsorbents and their influence on the process performance, the choice of the material is not trivial but requires systematic approaches. In particular, the material choice should be based on the performance of the resulting process.
View Article and Find Full Text PDFIn this work, protonated poly(heptazine imide) (H-PHI) was obtained by adding acid to the suspension of potassium PHI (K-PHI) in ethanol. It was established that the obtained H-PHI demonstrates very high photocatalytic activity in the reaction of hydrogen formation from ethanol in the presence of Pt nanoparticles under visible light irradiation in comparison with K-PHI. This enhancement can be attributed to improved efficiency of photogenerated charge transfer to the photocatalyst's surface, where redox processes occur.
View Article and Find Full Text PDFPredicting thermodynamic equilibrium properties is essential to develop chemical and energy conversion processes in the absence of experimental data. For the modeling of thermodynamic properties, statistical associating fluid theory (SAFT)-based equations of state, such as perturbed-chain polar (PCP)-SAFT, have been proven powerful and found broad application. The PCP-SAFT parameters can be predicted by group-contribution (GC) methods.
View Article and Find Full Text PDFAdsorption is at the heart of many processes from gas separation to cooling. The design of adsorption-based processes requires equilibrium adsorption properties. However, data for adsorption equilibria are limited, and therefore, a model is desirable that uses as little data as possible for its parametrization, while allowing for data interpolation or even extrapolation.
View Article and Find Full Text PDF