Present and future climatic trends are expected to markedly alter water fluxes and stores in the hydrologic cycle. In addition, water demand continues to grow due to increased human use and a growing population. Sustainably managing water resources requires a thorough understanding of water storage and flow in natural, agricultural, and urban ecosystems.
View Article and Find Full Text PDFRiparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. We tested this idea using a 3-year-long microclimate dataset collected along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France.
View Article and Find Full Text PDFA fundamental assumption when using hydrogen and oxygen stable isotopes to understand ecohydrological processes is that no isotope fractionation occurs during plant water uptake/transport/redistribution. A growing body of evidence has indicated that hydrogen isotope fractionation occurs in certain environments or for certain plant species. However, whether the plant water source hydrogen isotope offset (δ H offset) is a common phenomenon and how it varies among different climates and plant functional types remains unclear.
View Article and Find Full Text PDFAlternative water uptake pathways through leaves and bark complement water supply with interception, fog or dew. Bark water-uptake contributes to embolism-repair, as demonstrated in cut branches. We tested whether bark water-uptake could also contribute to supplement xylem-water for transpiration.
View Article and Find Full Text PDF