Publications by authors named "A Baktash"

The activation mechanism of Li-rich cathode has been discussed for many years, yet there is still debate on different theories. Potassium doping can assist the investigation on activation mechanism through its unique function in terms of blocking TM migration during activation.   K-doping works by occupying Li sites even after Li has been extracted, increasing stability by blocking transition metals from migrating into these sites, which can help us distinguish the pathway of activation.

View Article and Find Full Text PDF

A strong driving force for charge separation and transfer in semiconductors is essential for designing effective photoelectrodes for solar energy conversion. While defect engineering and polarization alignment can enhance this process, their potential interference within a photoelectrode remains unclear. Here we show that oxygen vacancies in bismuth vanadate (BiVO) can create defect dipoles due to a disruption of symmetry.

View Article and Find Full Text PDF

Breast cancer continues to be a significant contributor to global cancer deaths, particularly among women. This highlights the critical role of early detection and treatment in boosting survival rates. While conventional diagnostic methods like mammograms, biopsies, ultrasounds, and MRIs are valuable tools, limitations exist in terms of cost, invasiveness, and the requirement for specialized equipment and trained personnel.

View Article and Find Full Text PDF

Water molecules, which act as both solvent and reactant, play critical roles in photocatalytic reactions for methanol conversion. However, the influence of water on the adsorption of methanol and desorption of liquid products, which are two essential steps that control the performance in photocatalysis, has been well under-explored. Herein, we reveal the role of water in heterogeneous photocatalytic processes of methanol conversion on the platinized carbon nitride (Pt/CN) model photocatalyst.

View Article and Find Full Text PDF

Immune checkpoints (CTLA4 & PD-1) are inhibitory pathways that block aberrant immune activity and maintain self-tolerance. Tumors co-opt these checkpoints to avoid immune destruction. Immune checkpoint inhibitors (ICIs) activate immune cells and restore their tumoricidal potential, making them highly efficacious cancer therapies.

View Article and Find Full Text PDF