Proc Natl Acad Sci U S A
August 2014
There has been accumulating evidence for a regionalized organization of the cerebellum, which was mostly deduced from anatomical mapping of axonal projections of cerebellar afferents. A likewise regionalization of the cerebellar output has been suggested from lesion studies and dye-tracer experiments, but its physiological targets as well as the functional relevance of such an output regionalization are less clear. Ideally, such functional regionalization should be proven noninvasively in vivo.
View Article and Find Full Text PDFThis review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made.
View Article and Find Full Text PDFJ Fish Biol
February 2009
The authors show that co-injection at the one-cell stage of mRNA encoding a nuclear-targeted meganuclease I-SceI together with expression cassettes flanked by cognate restriction sites results in efficient stable transgenesis in zebrafish Danio rerio.
View Article and Find Full Text PDFThe upper rhombic lip, a prominent germinal zone of the cerebellum, was recently demonstrated to generate different neuronal cell types over time from spatial subdomains. We have characterized the differentiation of the upper rhombic lip derived granule cell population in stable GFP-transgenic zebrafish in the context of zebrafish cerebellar morphogenesis. Time-lapse analysis followed by individual granule cell tracing demonstrates that the zebrafish upper rhombic lip is spatially patterned along its mediolateral axis producing different granule cell populations simultaneously.
View Article and Find Full Text PDFIntravital time-lapse imaging has altered significantly many long-standing rules of biological mechanisms, but being apparatus-intense and laborious, time-lapse imaging remained mostly restricted to specialized labs. We show that recently introduced, fully automated fluorescence stereomicroscopes represent cost-effective but powerful means of imaging dynamic events ranging from observing embryogenesis over several days to detailed tissue rearrangements and fast blood cell rolling in vivo. When combined with deconvolution approaches, even subcellular resolution in several colors can be achieved.
View Article and Find Full Text PDF