Publications by authors named "A B Zaltsman"

Chemical analysis of hazardous surface contaminations, such as hazardous substances, explosives or illicit drugs, is an essential task in security, environmental and safety applications. This task is mostly based on the collection of particles with swabs, followed by thermal desorption into a vapor analyzer, usually a detector based on ion mobility spectrometry (IMS). While this methodology is well established for several civil applications, such as border control, it is still not efficient enough for various conditions, as in sampling rough and porous surfaces.

View Article and Find Full Text PDF

We developed and optimized surface-enhanced Raman spectrometry (SERS) methods for trace analysis of explosive vapour and particles using a hand-held Raman spectrometer in the field. At first, limits of detection (LODs) using SERS methods based on a colloidal suspension of gold nanoparticles were measured under alkaline conditions and are as follows: pentaerythritol tetranitrate (PETN) (1.5 × 10 M, 6.

View Article and Find Full Text PDF

Sampling hazardous compounds in the form of solids and liquids is a growing need in the fields of homeland security and forensics. Chemical analysis of particles and droplets under field conditions is crucial for various tasks carried out by counter-terrorism and law enforcement units. The use of simple, small and low cost means to achieve this goal is constantly pursued.

View Article and Find Full Text PDF

A sensitive surface-enhanced Raman spectroscopy (SERS) substrate was developed to enable hand-held Raman spectrometers to detect gas-phase VX and HD. The substrate comprised Au nanoparticles modified onto quartz fibres. Limits of detection (LOD) of 0.

View Article and Find Full Text PDF

Cooling of beams of gold ions using electron bunches accelerated with radio-frequency systems was recently experimentally demonstrated in the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. Such an approach is new and opens the possibility of using this technique at higher energies than possible with electrostatic acceleration of electron beams. The challenges of this approach include generation of electron beams suitable for cooling, delivery of electron bunches of the required quality to the cooling sections without degradation of beam angular divergence and energy spread, achieving the required small angles between electron and ion trajectories in the cooling sections, precise velocity matching between the two beams, high-current operation of the electron accelerator, as well as several physics effects related to bunched-beam cooling.

View Article and Find Full Text PDF