Introduction: Prehospital capabilities are inadequately developed to meet the growing needs for emergency care in most low- and middle-income countries. This study aims to describe the prehospital care received by the road traffic injury (RTI) victims presenting to a level I Trauma Care Center in Central Kerala, India.
Methods: This was a hospital-based prospective observational study, which included consecutive victims of RTI attending the emergency department within 24-h of the event.
Trends of kidney cancer cases worldwide are expected to increase persistently and this inspires the modification of the traditional diagnosis system to respond to future challenges. Renal Cell Carcinoma (RCC) is the most common kidney cancer and responsible for 80-85% of all renal tumors. This study proposed a robust and computationally efficient fully automated Renal Cell Carcinoma Grading Network (RCCGNet) from kidney histopathology images.
View Article and Find Full Text PDFTo improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on two aspects: first, it effectively utilized residual connections throughout the network and provides a wide and deep encoder-decoder path, which results to capture relevant context and more localized features. Second, vanished boundary of detected nuclei is addressed by proposing an efficient loss function that better train our proposed model and reduces the false prediction which is undesirable especially in healthcare applications.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
December 2021
Purpose: Increasing cancer disease incidence worldwide has become a major public health issue. Manual histopathological analysis is a common diagnostic method for cancer detection. Due to the complex structure and wide variability in the texture of histopathology images, it has been challenging for pathologists to diagnose manually those images.
View Article and Find Full Text PDFImage segmentation remains to be one of the most vital tasks in the area of computer vision and more so in the case of medical image processing. Image segmentation quality is the main metric that is often considered with memory and computation efficiency overlooked, limiting the use of power hungry models for practical use. In this paper, we propose a novel framework (Kidney-SegNet) that combines the effectiveness of an attention based encoder-decoder architecture with atrous spatial pyramid pooling with highly efficient dimension-wise convolutions.
View Article and Find Full Text PDF