Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins.
View Article and Find Full Text PDFCorrelated band theory implemented as a combination of the relativistic density functional theory with exact diagonalization [DFT+U(ED)] of the Anderson impurity term with Coulomb repulsion U in the 5f shell is applied to the magnetic field polarized state of [Formula: see text]. We demonstrate that the DFT+U(ED) approach provides a good agreement with very recent x-ray absorbtion near edge structure (XANES) and x-ray magnetic circular dichroism (XMCD) experiments. The branching ratio for the [Formula: see text] edge transitions of uranium, and the valence spin-orbit interaction per hole were evaluated in a perfect agreement with the XANES.
View Article and Find Full Text PDFThe electronic structure, spin and orbital magnetic moments, and the magnetic anisotropy energy in selected U-based compounds are investigated making use of the correlated band theory. First, we demonstrate that the LSDA+U approach with exact atomic limit implemented as a combination of the relativistic density functional theory with the Anderson impurity model provides a good quantitative description for UGa[Formula: see text]. Further, the method is applied to UFe[Formula: see text] and UFe[Formula: see text]Si[Formula: see text] ferromagnets.
View Article and Find Full Text PDFWe measure x-ray magnetic circular dichroism (XMCD) spectra at the Pu M_{4,5} absorption edges from a newly prepared high-quality single crystal of the heavy-fermion superconductor ^{242}PuCoGa_{5}, exhibiting a critical temperature T_{c}=18.7 K. The experiment probes the vortex phase below T_{c} and shows that an external magnetic field induces a Pu 5f magnetic moment at 2 K equal to the temperature-independent moment measured in the normal phase up to 300 K by a superconducting quantum interference device.
View Article and Find Full Text PDF