Diabetes affects metabolism and metabolite concentrations in multiple organs. Previous preclinical studies have shown that receptor for advanced glycation end products (RAGE, gene symbol Ager) and its cytoplasmic domain binding partner, Diaphanous-1 (DIAPH1), are key mediators of diabetic micro- and macro-vascular complications. In this study, we used H-Magnetic Resonance Spectroscopy (MRS) and chemical shift encoded (CSE) Magnetic Resonance Imaging (MRI) to investigate the metabolite and water-fat fraction in the heart and hind limb muscle in a murine model of type 1 diabetes (T1D) and to determine if the metabolite changes in the heart and hind limb are influenced by (a) deletion of Ager or Diaph1 and (b) pharmacological blockade of RAGE-DIAPH1 interaction in mice.
View Article and Find Full Text PDFBackground And Aims: In hyperglycemia, inflammation, oxidative stress and aging, Damage Associated Molecular Patterns (DAMPs) accumulate in conditions such as atherosclerosis. Binding of DAMPs to receptors such as the receptor for advanced glycation end products (RAGE) activates signal transduction cascades that contribute to cellular stress. The cytoplasmic domain (tail) of RAGE (ctRAGE) binds to the formin Diaphanous1 (DIAPH1), which is important for RAGE signaling.
View Article and Find Full Text PDFRibosomes bind to many metabolic enzymes and change their activity. A general mechanism for ribosome-mediated amplification of metabolic enzyme activity, RAMBO, was formulated and elucidated for the glycolytic enzyme triosephosphate isomerase, TPI. The RAMBO effect results from a ribosome-dependent electric field-substrate dipole interaction energy that can increase or decrease the ground state of the reactant and product to regulate catalytic rates.
View Article and Find Full Text PDFThe synthesis of constrained 12-membered rings is notably difficult. The main challenges result from constraints during the linear peptide cyclization. Attempts to overcome constraints through excessive activation frequently cause peptidyl epimerization, while insufficient activation of the C-terminus hampers cyclization and promotes intermolecular oligomer formation.
View Article and Find Full Text PDF