Background: In recent years, the intersection of natural language processing (NLP) and public health has opened innovative pathways for investigating social determinants of health (SDOH) in textual datasets. Despite the promise of NLP in the SDOH domain, the literature is dispersed across various disciplines, and there is a need to consolidate existing knowledge, identify knowledge gaps in the literature, and inform future research directions in this emerging field.
Objective: This research protocol describes a systematic review to identify and highlight NLP techniques, including large language models, used for SDOH-related studies.
The objective of the max-cut problem is to cut any graph in such a way that the total weight of the edges that are cut off is maximum in both subsets of vertices that are divided due to the cut of the edges. Although it is an elementary graph partitioning problem, it is one of the most challenging combinatorial optimization-based problems, and tons of application areas make this problem highly admissible. Due to its admissibility, the problem is solved using the Harris Hawk Optimization algorithm (HHO).
View Article and Find Full Text PDFBackground: The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging.
Objective: This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians' queries on emerging issues associated with health-related topics, using user-generated medical information on social media.
Objective: To detect and classify features of stigmatizing and biased language in intensive care electronic health records (EHRs) using natural language processing techniques.
Materials And Methods: We first created a lexicon and regular expression lists from literature-driven stem words for linguistic features of stigmatizing patient labels, doubt markers, and scare quotes within EHRs. The lexicon was further extended using Word2Vec and GPT 3.