Publications by authors named "A B Meinel"

Motor impaired patients performing repetitive motor tasks often reveal large single-trial performance variations. Based on a data-driven framework, we extracted robust oscillatory brain states from pre-trial intervals, which are predictive for the upcoming motor performance on the level of single trials. Based on the brain state estimate, i.

View Article and Find Full Text PDF

: Vaccines against whooping cough (pertussis) and seasonal-influenza are recommended for pregnant women in England. Uptake however varies regionally and by ethnicity. Pregnant women are traditionally vaccinated in primary care, though some hospitals now offer vaccines through antenatal clinics.

View Article and Find Full Text PDF

Many cognitive, sensory and motor processes have correlates in oscillatory neural source activity, which is embedded as a subspace in the recorded brain signals. Decoding such processes from noisy magnetoencephalogram/electroencephalogram (M/EEG) signals usually requires data-driven analysis methods. The objective evaluation of such decoding algorithms on experimental raw signals, however, is a challenge: the amount of available M/EEG data typically is limited, labels can be unreliable, and raw signals often are contaminated with artifacts.

View Article and Find Full Text PDF

Data-driven spatial filtering algorithms optimize scores, such as the contrast between two conditions to extract oscillatory brain signal components. Most machine learning approaches for the filter estimation, however, disregard within-trial temporal dynamics and are extremely sensitive to changes in training data and involved hyperparameters. This leads to highly variable solutions and impedes the selection of a suitable candidate for, e.

View Article and Find Full Text PDF

We report on novel supervised algorithms for single-trial brain state decoding. Their reliability and robustness are essential to efficiently perform neurotechnological applications in closed-loop. When brain activity is assessed by multichannel recordings, spatial filters computed by the source power comodulation (SPoC) algorithm allow identifying oscillatory subspaces.

View Article and Find Full Text PDF