Completing the picture of the underlying physics of perovskite solar cell interfaces that incorporate self-assembled molecular layers (SAMs) will accelerate further progress in p-i-n devices. In this work, we modified the Fermi level of a nickel oxide-perovskite interface by utilizing SAM layers with a range of dipole strengths to establish the link between the resulting shift of the built-in potential of the solar cell and the device parameters. To achieve this, we fabricated a series of high-efficiency perovskite solar cells with no hysteresis and characterized them through stabilize and pulse (SaP), JV curve, and time-resolved photoluminescence (TRPL) measurements.
View Article and Find Full Text PDFWe investigated the use of titania coated ZnO tetrapods for photocatalytic degradation of two common types of microplastics, namely polyethylene (PE) microparticles and polyester (PES) microfibers. We found that the plastics morphology affects the rate of degradation, and that the use of electron scavengers is needed to maintain the reactivity of the photocatalysts over a prolonged period of time. Complete mass loss of PE and PES is achieved under UV illumination for 480 h and 624 h, respectively.
View Article and Find Full Text PDFIron-based materials are among the most commonly used oxygen scavengers. Here, we investigated the mesoporous silica nanosphere (MSN)-supported iron-based scavengers, such as FeO nanoparticles and different atomic layer deposition (ALD) coatings (FeO and Fe). We found that the scavenger performance is a result of a complex interplay between available Brunauer-Emmett-Teller surface area and the scavenger composition, with the combination of infiltrated nanoparticles and Fe-ALD coating resulting in the best performance.
View Article and Find Full Text PDFWe investigated the influence of two passivating molecules containing a P═O group on the performance of quasi-2D Dion-Jacobson halide perovskite light-emitting diodes, namely, triphenylphosphine oxide (TPPO) and diphenyl-4-triphenylsilylphenyl phosphine oxide (TSPO1). We found that both passivating molecules lead to increased efficiency compared to control devices, while they had opposite effects on device lifetime, with a decrease observed for TPPO and an increase observed for TSPO1. The two passivating molecules resulted in differences in energy-level alignment, electron injection, film morphology and crystallinity, and ion migration during operation.
View Article and Find Full Text PDFGrowing application of zinc oxide nanoparticles (ZnO-NPs) in global market has led to the concern over their potential environmental impacts. Filter feeders like mussels are prone to nanoparticles due to their superior filter-feeding ability. Temperature and salinity of coastal and estuarine seawaters often vary seasonally and spatially, and their changes may jointly influence physicochemical properties of ZnO-NPs and thus their toxicity.
View Article and Find Full Text PDF