Publications by authors named "A B Brussaard"

GABA(A) receptors are critically involved in hippocampal oscillations. GABA(A) receptor α1 and α2 subunits are differentially expressed throughout the hippocampal circuitry and thereby may have distinct contributions to oscillations. It is unknown which GABA(A) receptor α subunit controls hippocampal oscillations and where these receptors are expressed.

View Article and Find Full Text PDF

The hippocampus is critical for a wide range of emotional and cognitive behaviors. Here, we performed the first genome-wide search for genes influencing hippocampal oscillations. We measured local field potentials (LFPs) using 64-channel multi-electrode arrays in acute hippocampal slices of 29 BXD recombinant inbred mouse strains.

View Article and Find Full Text PDF

Megalencephalic leucoencephalopathy with subcortical cysts is a genetic brain disorder with onset in early childhood. Affected infants develop macrocephaly within the first year of life, after several years followed by slowly progressive, incapacitating cerebellar ataxia and spasticity. From early on, magnetic resonance imaging shows diffuse signal abnormality and swelling of the cerebral white matter, with evidence of highly increased white matter water content.

View Article and Find Full Text PDF

Ongoing neuronal oscillations in vivo exhibit non-random amplitude fluctuations as reflected in a slow decay of temporal auto-correlations that persist for tens of seconds. Interestingly, the decay of auto-correlations is altered in several brain-related disorders, including epilepsy, depression and Alzheimer's disease, suggesting that the temporal structure of oscillations depends on intact neuronal networks in the brain. Whether structured amplitude modulation occurs only in the intact brain or whether isolated neuronal networks can also give rise to amplitude modulation with a slow decay is not known.

View Article and Find Full Text PDF

Cognitive ability and the properties of brain oscillation are highly heritable in humans. Genetic variation underlying oscillatory activity might give rise to differences in cognition and behavior. How genetic diversity translates into altered properties of oscillations and synchronization of neuronal activity is unknown.

View Article and Find Full Text PDF