Publications by authors named "A B Al-Mehdi"

The Gram-negative, opportunistic pathogen utilizes a type III secretion system to inject exoenzyme effectors into a target host cell. Of the four best-studied exoenzymes, ExoU causes rapid cell damage and death. ExoU is a phospholipase A (PLA) that hydrolyses host cell membranes, and strains expressing ExoU are associated with poor outcomes in critically ill patients with pneumonia.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes nosocomial pneumonia, urinary tract infections, and bacteremia. A hallmark of P. aeruginosa pathogenesis is disruption of host cell function by the type III secretion system (T3SS) and its cognate exoenzyme effectors.

View Article and Find Full Text PDF

In hypoxia, mitochondria-generated reactive oxygen species not only stimulate accumulation of the transcriptional regulator of hypoxic gene expression, hypoxia inducible factor-1 (Hif-1), but also cause oxidative base modifications in hypoxic response elements (HREs) of hypoxia-inducible genes. When the hypoxia-induced base modifications are suppressed, Hif-1 fails to associate with the HRE of the VEGF promoter, and VEGF mRNA accumulation is blunted. The mechanism linking base modifications to transcription is unknown.

View Article and Find Full Text PDF

Tetracycline-inducible systems allow for either suppression or induction of transgene expression to facilitate studies of cell physiology. Doxycycline is a preferred inducer for these gene expression systems due to its membrane permeability; however, the heterocyclic structure of doxycycline exhibits fluorogenic properties that can potentially bias measurement of other fluorochromes. Thus the simultaneous use of tetracycline-inducible systems and fluorescent proteins as reporter genes or as intracellular biosensors may lead to potentially confounding results.

View Article and Find Full Text PDF