Publications by authors named "A Azzeer"

The response of metal nanostructures to optical excitation leads to localized surface plasmon (LSP) generation with nanoscale field confinement driving applications in, for example, quantum optics and nanophotonics. Field sampling in the terahertz domain has had a tremendous impact on the ability to trace such collective excitations. Here, we extend such capabilities and introduce direct sampling of LSPs in a more relevant petahertz domain.

View Article and Find Full Text PDF

Photoconductive field sampling enables petahertz-domain optoelectronic applications that advance our understanding of light-matter interaction. Despite the growing importance of ultrafast photoconductive measurements, a rigorous model for connecting the microscopic electron dynamics to the macroscopic external signal is lacking. This has caused conflicting interpretations about the origin of macroscopic currents.

View Article and Find Full Text PDF

Background: Breast cancer screening is currently predominantly based on mammography, tainted with the occurrence of both false positivity and false negativity, urging for innovative strategies, as effective detection of early-stage breast cancer bears the potential to reduce mortality. Here we report the results of a prospective pilot study on breast cancer detection using blood plasma analyzed by Fourier-transform infrared (FTIR) spectroscopy - a rapid, cost-effective technique with minimal sample volume requirements and potential to aid biomedical diagnostics. FTIR has the capacity to probe health phenotypes via the investigation of the full repertoire of molecular species within a sample at once, within a single measurement in a high-throughput manner.

View Article and Find Full Text PDF

The development of high-energy, high-power, multi-octave light transients is currently the subject of intense research driven by emerging applications in attosecond spectroscopy and coherent control. We report on a phase-stable, multi-octave source based on a Yb:YAG amplifier for light transient generation. We demonstrate the amplification of a two-octave spectrum to 25 μJ of energy in two broadband amplification channels and their temporal compression to 6 and 18 fs at 1 and 2 μm, respectively.

View Article and Find Full Text PDF

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment.

View Article and Find Full Text PDF