Publications by authors named "A Audouard"

de Haas-van Alphen oscillations of the organic metal κ-(ET)Cu(SCN) have been measured up to 55 T at liquid helium temperatures. The Fermi surface of this charge transfer salt is a textbook example of a linear chain of orbits coupled by magnetic breakdown. Accordingly, the oscillation spectrum is composed of linear combinations of the frequencies linked to the α and magnetic breakdown-induced β orbits.

View Article and Find Full Text PDF

According to band structure calculations, the Fermi surface of the quasi-two dimensional metal θ-(ET)4ZnBr4(C6H4Cl2) illustrates the linear chain of coupled orbits model. Accordingly, de Haas-van Alphen oscillations spectra recorded in pulsed magnetic field of up to 55 T evidence many Fourier components, the frequency of which are linear combinations of the frequencies relevant to the closed α and the magnetic breakdown β orbits. The field and temperature dependence of their amplitude are quantitatively accounted for by analytic calculations including, beyond the Lifshitz-Kosevich formula, second-order terms in damping factors due to the oscillation of the chemical potential as the magnetic field varies.

View Article and Find Full Text PDF

Temperature dependence of the upper critical magnetic field (Hc2) of single crystalline FeTe0.5Se0.5(Tc = 14.

View Article and Find Full Text PDF

By improving the experimental conditions and extensive data accumulation, we have achieved very high precision in the measurements of the de Haas-van Alphen effect in the underdoped high-temperature superconductor YBa2Cu3O6.5. We find that the main oscillation, so far believed to be single frequency, is composed of three closely spaced frequencies.

View Article and Find Full Text PDF

The de Haas-van Alphen effect was observed in the underdoped cuprate YBa2Cu3O6.5 via a torque technique in pulsed magnetic fields up to 59 T. Above a field of approximately 30 T the magnetization exhibits clear quantum oscillations with a single frequency of 540 T and a cyclotron mass of 1.

View Article and Find Full Text PDF