COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs.
View Article and Find Full Text PDFHybrid hydrogels based on silylated polyethylene glycol, Si-PEG, were evaluated as hybrid matrices able to trap, stabilize and release bovine serum albumin (BSA) in a controlled manner. Parameters of the inorganic condensation reaction leading to a siloxane (Si-O-Si) three dimensional network were carefully investigated, in particular the temperature, the surrounding hygrometry and the Si-PEG concentration. The resulting hydrogel structural features affected the stability, swelling, and mechanical properties of the network, leading to different protein release profiles.
View Article and Find Full Text PDFCompared to chemicals that continue to dominate the overall pharmaceutical market, protein therapeutics offer the advantages of higher specificity, greater activity, and reduced toxicity. While nearly all existing therapeutic proteins were developed against soluble or extracellular targets, the ability for proteins to enter cells and target intracellular compartments can significantly broaden their utility for a myriad of exiting targets. Given their physical, chemical, biological instability that could induce adverse effects, and their limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential.
View Article and Find Full Text PDFThe aim of this study was to evidence the ability of vegetable oil-based hybrid microparticles (HMP) to be an efficient and safe drug delivery system after subcutaneous administration. The HMP resulted from combination of a thermostabilized emulsification process and a sol-gel chemistry. First of all, castor oil was successfully silylated by means of (3-Isocyanatopropyl)trimethoxysilane in solvent-free and catalyst-free conditions.
View Article and Find Full Text PDFThe aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO.
View Article and Find Full Text PDF