We demonstrate a single-stage, multipass Ti:sapphire amplifier capable of delivering sub-13 fs, 3.2 mJ pulses at a 1 kHz repetition rate. Gaussian filters are used to suppress the gain-narrowing effect, thereby enabling the achievement of an ultrabroadband flat-top spectrum with a >130 .
View Article and Find Full Text PDFBoth normal and abnormal sub-100-nanometer ripples (wavenumber ∼10 μm(-1)) were separately observed on Ti surfaces excited by linearly polarized IR femtosecond laser pulses at lower and higher fluences. Numerical modeling of dispersion curves for surface plasmon-polaritons on the photoexcited Ti surfaces demonstrates its surface plasmon resonance with the peak wavenumber ∼8 μm(-1) spectrally tuned by prompt surface optical response, prompt surface charging, and pre-oxidation, with normal/abnormal nanoripples appearing at its red/blue shoulders, respectively.
View Article and Find Full Text PDFIn this work the formation of laser-induced periodic surface structures (LIPSS) on a titanium surface upon irradiation by linearly polarized femtosecond (fs) laser pulses with a repetition rate of 1 kHz in air environment was studied experimentally. In particular, the dependence of high-spatial-frequency-LIPSS (HSFL) characteristics on various laser parameters: fluence, pulse number, wavelength (800 nm and 400 nm), pulse duration (10 fs - 550 fs), and polarization was studied in detail. In comparison with low-spatial-frequency-LIPSS (LSFL), the HSFL emerge at a much lower fluence with orientation perpendicular to the ridges of the LSFL.
View Article and Find Full Text PDFThe demand for ever shorter light pulses presents a challenge to the detection and stabilization of the carrier-envelope phase (CEP) in amplifier systems. Here we present a combination of single-shot detection and a fast actuator that is capable of measuring and correcting the CEP in every single shot emitted by a millijoule-scale, multi-kHz femtosecond laser amplifier. The residual CEP noise within 50 s amounts to 98 mrad rms in-loop (fast detection, 5·10⁵ shots) and 140 mrad out-of-loop (slow detection, 6250 shots), approaching the noise floor of the f-to-2f measurement.
View Article and Find Full Text PDFThe feed-forward technique has recently revolutionized carrier-envelope phase (CEP) stabilization, enabling unprecedented values of residual phase jitter. Nevertheless, its demonstrations have hitherto remained in a proof-of-principle state. Here we show that pulse quality and power issues can be solved, leading to few-cycle pulses with good beam quality.
View Article and Find Full Text PDF