We determined collision cross section (CCS) values for singly and doubly charged cucurbit[]uril ( = 5-7), decamethylcucurbit[5]uril, and cyclohexanocucurbit[5]uril complexes of alkali metal cations (Li-Cs). These hosts are relatively rigid. CCS values calculated using the projection approximation (PA) for computationally modeled structures of a given host are nearly identical for +1 and +2 complexes, with weak metal ion dependence, whereas trajectory method (TM) calculations of CCS for the same structures consistently yield values 7-10% larger for the +2 complexes than for the corresponding +1 complexes and little metal ion dependence.
View Article and Find Full Text PDFWe have employed mass spectrometry, ion mobility, and computational techniques to characterize complexes of -alkylammonium ions with cucurbit[5]uril (CB[5]) and cucurbit[6]uril (CB[6]) ligands in the gas phase. Nonrotaxane structures are energetically preferred and experimentally observed for all CB[5] complexes. Pseudorotaxane structures are computationally favored and experimentally observed for [CB[6]·-alkylammonium] complexes, but the addition of a second cation (proton, alkali metal ion, another alkylammonium ion, or guanidinium) on the opposite rim of CB[6] causes sufficiently unfavorable steric interactions that -pentylammonium and longer chains no longer remain threaded through the CB[6] cavity; nonrotaxane topologies are then favored.
View Article and Find Full Text PDF