Publications by authors named "A Argyrokastritis"

Hormone Sensitive Lipase (HSL) catalyzes the rate-limiting step in the mobilization of fatty acids from adipose tissue, thus determining the supply of energy substrates in the body. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signaling cascade reactions. HSL constitutes the critical enzyme in the modulation of lipid stores and the only component being subjected to hormonal control in terms of the recently identified Adipose Triglyceride Lipase (ATGL).

View Article and Find Full Text PDF

Malic enzyme catalyzes decarboxylation of malate to pyruvate and CO(2), providing de novo biosynthesis of fatty acids with NADPH. Since lipogenesis in ruminants, contrarily to some monogastric species like human and rodents, occurs predominantly in adipose tissue, the activity of many lipogenic enzymes is higher in adipose tissue compared to liver. Expression of malic enzyme is regulated by nutrition; refeeding after a period of starvation results to an induction of the enzyme.

View Article and Find Full Text PDF

Hormone Sensitive Lipase (HSL) is a highly regulated enzyme that mediates lipolysis in adipocytes. HSL enzymatic activity is increased by adrenergic agonists, such as catecholamines and glucagons, which induce cyclic AMP (cAMP) intracellular production, subsequently followed by the activation of Protein Kinase A (PKA) and its downstream signalling cascade reactions. Since HSL constitutes the key enzyme in the regulation of lipid stores and the only enzyme being subjected to hormonal regulation [in terms of the recently identified Adipose Triglyceride Lipase (ATGL)], the ovine Hormone Sensitive Lipase (ovHSL) full-length cDNA clones were isolated, using a Polymerase Chain Reaction-based (PCR) strategy.

View Article and Find Full Text PDF

To better understand the structure and the function of ovine glucose 6-phosphate dehydrogenase (G6PD) promoter region, a genome-walking procedure was followed to isolate and sequence a 1628 bp fragment, containing the 5' regulatory region of the G6PD gene. In silico analysis of the sequence showed many conserved blocks and features with other known mammalian G6PD promoter regions. The analysis also revealed the presence of one TATA box, three GC boxes, two E-boxes and several binding sites for Stimulating Protein 1 (Sp1) and Activator Protein 2 (AP2).

View Article and Find Full Text PDF

Glucose 6-phosphate dehydrogenase (G6PD) plays an important role in ruminant's lipogenesis, as it provides necessary compounds of NADPH for the synthesis of fatty acids catalyzing the first committed reaction in the pentose phosphate pathway. In this work the full length ovine glucose 6-phosphate dehydrogenase cDNA was isolated using a polymerase chain reaction based strategy. Two isoforms (OG6PDA and OG6PDB) were detected encoding a protein of 515 and 524 amino acids, respectively.

View Article and Find Full Text PDF