Purpose: Imbalances of muscle strength and tendon stiffness can increase the operating strain of tendons and risk of injury. Here, we used a new approach to identify muscle-tendon imbalances and personalize exercise prescription based on tendon strain during maximum voluntary contractions (ε) to mitigate musculotendinous imbalances in male adult volleyball athletes.
Methods: Four times over a season, we measured knee extensor strength and patellar tendon mechanical properties using dynamometry and ultrasonography.
This study aimed to examine the temporal dynamics of muscle-tendon adaptation and whether differences between their sensitivity to mechano-metabolic stimuli would lead to non-uniform changes within the triceps surae (TS) muscle-tendon unit (MTU). Twelve young adults completed a 12-week training intervention of unilateral isometric cyclic plantarflexion contractions at 80% of maximal voluntary contraction until failure to induce a high TS activity and hence metabolic stress. Each participant trained one limb at a short (plantarflexed position, 115°: PF) and the other at a long (dorsiflexed position, 85°: DF) MTU length to vary the mechanical load.
View Article and Find Full Text PDFIntroduction: Perturbation-based balance training (PBT) is promising for fall prevention in older adults, mimicking real-life fall situations at a person's stability thresholds to improve reactive balance. Hence, it can be associated with anxiety, but knowledge about the acceptability of PBT is scarce.
Method: This is a secondary analysis of a randomized controlled trial comparing the effects of two different PBT paradigms that aims to evaluate and compare the acceptability of those training paradigms in fall-prone older adults.
Human tendons adapt to mechanical loading, yet there is little information on the effect of the temporal coordination of loading and recovery or the dose-response relationship. For this reason, we assigned adult men to either a control or intervention group. In the intervention group, the two legs were randomly assigned to one of five high-intensity Achilles tendon (AT) loading protocols (i.
View Article and Find Full Text PDF