Millions of people worldwide suffer from cancer, facing challenges such as treatments affecting healthy cells, suboptimal responses, adverse effects, recurrence risk, drug resistance, and nonspecific targeting. Chemoresistance leads to fatalities, but phytoactives show promise in cancer management despite limitations such as high metabolism, poor absorption, and high dosage requirements. Challenges in the large-scale isolation of phytoactive compounds, solubility, bioavailability, and targeting limit their development.
View Article and Find Full Text PDFExpert Opin Drug Deliv
December 2024
Introduction: Chiral nanocarriers enhance therapeutic efficacy by improving in vivo stability and cellular uptake. Chemical functionalization reduces cytotoxicity, resulting in favorable biocompatibility. Nanoparticles self-assemble into supraparticles, enhancing drug delivery through improved retention and drug loading.
View Article and Find Full Text PDFThe goal of the research was to develop a hydrophobic octanoate salt of chitosan (CS-OA) and use the salt as a nanoparticle platform for the delivery of curcumin (CUR) into prostate cancer cells. The nanoprecipitation technique was used to prepare the nanoparticles, which were measured for particle size and encapsulation efficacy relative to CUR-CS nanoparticles. The cytotoxicity of CUR-OA-CS nanoparticles was evaluated in prostate cancerous cells (PC3 and DU145) in comparison with the corresponding blank nanoparticles and hydroalcoholic CUR solution.
View Article and Find Full Text PDFThe present study aims to develop, optimize and assess hispolon (HPN) lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and suspension for treating hepatocellular carcinoma (HCC). It included UPLC-MS/MS, solubility, optimization, characterization, stability, and studies. HPN-loaded LNCs were developed using phase-inversion and temperature cycling, while SLNs and suspension using hot homogenization and trituration methods.
View Article and Find Full Text PDFImidazole derivatives are considered potential chemical compounds that could be therapeutically effective against several harmful pathogenic microbes. The chemical structure of imidazole, with a five-membered heterocycle, three carbon atoms, and two double bonds, tends to show antibacterial activities. In the present study, novel imidazole derivatives were designed and synthesized to be evaluated as antimicrobial agents owing to the low number of attempts to discover new antimicrobial agents and the emerging cases of antimicrobial resistance.
View Article and Find Full Text PDF